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For Asym., see J Halpern Science 1982, 217, 401-407.




Schrock dleveloped a post- Wilhinson  cat.  (make it more yeactive)
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Example where sth. more acfve than Wilkinson's cat is needed
Post Wilkinson Catalysts

Industrial synthesis of the fungicide Inpyrfluxam (Bayer AG)
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Collaboration with Solvias, LIKAT Rostock, Buss AG
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C. Schotes, S. Miiller, ACS Sustainable Chem. Eng. 2022, 10, 13244.
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Hydrogenation of ketone (Moyori)
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lsomexization vie M-H
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A lot of carbonyls Uknown across the PTE:
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Decarbonylation: (L= PPhy)
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