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Olefin Metathesis
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Can we do the same with alkynes”?
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Metal Hydrides — Hydrogenation ey interm,
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7. Cumulative plot of H-X vs. relative L,M~-X bond strengths discussed in this manuscript. Data for (DPPE)MePt-X (4), Cp*(PMe;);Ru-X
(0), Cp*;Sc-X (¢), Cp*s(OCMe;)Th-X (D), and Cp*(PMe;)(H)Ir-X (X) depicted for X = singly bonded first row main group substituents along
with the arbitrary line (slope = 1.00; intercept = 119.0 kcal'mol™) described in Figure 5. Scale definitions for (DPPE)MePtX, Cp*{PMe;),RuX, and
Cp*3(OCMe,) ThX data as described in Figures 5 and 6. To put the Sc-X data on these axes the Sc—C bond in Cp*;Sc—Ph has been defined as -8.1
keal'mol™'; similarly, the Ir-C bond in Cp*(PMe;)(H)Ir-cyclo-CH,, has been assigned an arbitrary value of 21 kcal-mol™’. Good i:1 correlation
of H-X and L,M-X bond strengths is noted.

Brnydza et al. J. Am. Chem. Soc. 1987, 109, 1444-1456.

Speciroscopy
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Fig. 2.10 — The hydride regions of the 'H spectra of two metal hydrides showing coupliag to
two cquivalent and onc unique *'P nucleus. The parameters used are typical of the gcometries
shown: (a) §—12, 2J(H-P)=14, 14, and 120 Hz; (b) §-17, 'J(H-P)=13, 13, and 19 Hz. Note

that in spectrum (b) the two triplets overlap (simulations).

Figure 1. Structure of W(CO)3(PPr'y)y(H,) (neutron, 30 K).
(Disorder is present in C-H positions of lower phosphine.)

Kubas et al. J. Am. Chem. Soc. 1984, 106, 451-452.
G. J. Kubas Acc. Chem. Res. 1988, 21, 120-128.
R.E. Crabtree Acc. Chem. Res. 1990, 23, 95-101.

How does H, interact with the MLy fragment?
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